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ACOUSTICS AND STABILITY OF FLUID FLOW IN
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A fluid flows horizontally through a fluid—structure system comprising alternating elastic
solid and liquid constituents arranged periodically in the vertical direction. An exact
analysis is performed to consider the existence and stability of small acoustic waves and
disturbances. The presence of the flow introduces the possibility of flow-induced flutter.
Unstable waves are generally possible for M of order unity, M being the Mach number
relative to the speed of shear waves in the solid. Instabilities can appear for much lower
values for antisymmetric flexural type motion. In that case it is found that a critical
wavenumber exists, indicating that the layered system is inherently unstable to long
wavelength disturbances.
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1. INTRODUCTION

Fluid-saturated permeable elastic solids exhibit distinct phenomena not seen in either
the solid or the liquid phase. The most interesting acoustic feature is the appearance of
the Biot “slow” wave, predicted by Biot (1956) and observed by Plona (1980) in
water-saturated sintered beads. Similar acoustic effects have since been seen in other
systems, including layered periodic solid-liquid configurations (Plona et al. 1987). The
periodicity of the layered structure permits a more precise theoretical analysis than for
a disordered system, and very good agreement has been observed between theory
(Rytov 1956; Schoenberg 1983) and experiment (Plona et al. 1987). The acoustics of
such layered solid-liquid structures is of great interest in various applications relating
to physics, mechanical engineering, Earth science, etc. (Brekhovskikh 1981), because
the structure displays the essential features of a realistic permeable elastic medium. In
all previous studies of this system it was assumed that both the solid and fluid
constituents are at rest in the ‘““‘ground” equilibrium configuration. On the other hand,
it is well known that sufficiently fast fluid motion through a deformable solid structure
can destabilize the system, causing flutter-like phenomena (Bolotin 1963).

Flutter has been studied extensively using engineering theories of plates and shells
for the solid phase, combined with hydrodynamic theories for the liquid, which are
sometimes based on the hypothesis of plane cross-sections, rather than with the help of
much more reliable theories of bulk hydrodynamics and elasticity (Fung 1955; Bolotin
1963). Indeed, there is a large amount of literature on the important problem of flow
stabilization using compliant coatings and structures; see Riley er al. (1988) for a
review. The main issue is how to suppress or delay the onset of instabilities associated
with a plethora of possible wave types, some associated primarily with viscosity, others
with the structure. Here we ignore effects of viscosity and assume the simplest type of
inviscid flow. In this regard the present study is more closely related to those of
Brazier-Smith & Scott (1984) and of Crighton & Owell (1991), who considered an
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isolated elastic plate in a uniform inviscid flow. Thin plate equations (Kirchhoff theory)
were used to model the structure and the fluid was assumed to be incompressible. In
this study we make no approximations other than the inviscid fluid and the uniform
flow assumptions. The solid and fluid are modeled precisely otherwise.

The purpose of this paper is to report on new results and physical phenomena caused
by the non-small relative velocity of the fluid propagating between solid elastic layers.
New, flutter-like instabilities are found and their asymptotic properties identified. Some
of these effects are a direct consequence of the flow, and vanish in the equilibrium,
no-flow state. The study of acoustic disturbances and flutter-like phenomena in the
presence of flow requires a nonlinear basis, and hence our study begins with an exact
nonlinear formulation. We then linearize the equations and interface boundary
conditions in the vicinity of a stationary state in which parallel isotropic elastic layers
are undeformed, while the fluid moves with the constant velocity V. Our objective is
to examine the dependence on V° of the dispersion equations of acoustic waves in the
small vicinity of the steady, uniform flow configuration. No attempt is made here to
explore what is undoubtedly a rich field for numerical study. Rather, we report exact
results and various asymptotic limits, such as long- and short-wavelengths, thin solid
regions, and joined half-spaces.

2. DISPERSION RELATIONS

2.1. NoNLINEAR EQUATIONS

Let us consider a periodically layered medium consisting of alternating solid and fluid
layers. The layers are infinite in the lateral direction, and the periodicity extends
indefinitely in the vertical direction. The fluid occupying the gaps between neighboring
solid layers is assumed to be inviscid. We choose the Eulerian description of continua
in order to simplify exactly the formulation of the interface boundary conditions. We
emphasize that the relative displacements of the fluid and solid constituents are not
small, generally speaking. We denote by x’ the Eulerian Cartesian coordinates, and
assume that the undisturbed elastic layers lie parallel to the plane x> constant.

The bulk equations within the solid and fluid constituents and the interface boundary
conditions are

R o )

o= vimvi) = v e (1a)
. AU o

Vi=" 4 VIV, (1b)

R\ o ,
pf< atf + V}V,V}) = -V, (1c)
s g (Vi) =0, 1d
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PN, = —p,N', (le)
VIN,= VN, (1f)

where p, and p, are the actual densities of the constituents, Vi and V} are their
velocities, Uj is the displacement of the solid, P{ and p, are the Cauchy stress tensor of
the solid and the fluid pressure, respectively, and N’ is the unit normal of the interface.
The system of equations (1) permits a stationary solution in which the solid layers are
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at rest and undeformed, whereas the fluid moves with constant velocity V° parallel to
the elastic layers. Linearizing the system of equations (1) about this state yields the
governing system for small disturbances, discussed next.

2.2. LINEARIZATION

We consider small dynamic motion superimposed on the state of uniform pressure and
flow in the fluid, corresponding to fluid velocity V', fluid pressure p°, and densities p}
and p?. The solid is also assumed to be in a state of uniform static initial stress,
PI'= P}, either hydrostatic (Pj= —p°8") or otherwise, with the initial deformation
homogeneous and defined by U; = Uy. Thus, let
V}: Vost + v}, Dr =p°+p,
o S @)
U= Uy + uy, Pl = Py + o,
where v} and the remaining dynamic quantities (v, V%, o, p, — p?, p; — p}, and p) are
small. We consider motion in the x' —x* plane, where, as mentioned before, x° is the

coordinate in the layering direction. Then equations (1) imply the following linearized
equations:

vy i
Py Pl (3a)
o ooul
ey 3b
= (3b)
v’ L0y .
0 f 0 YYf i
—Jiy —) = —Vip, 3
pf( ot ax! P (3¢)
sy oy i o 22 (3d)
or | PrYivr ax!
o= —p&¥, (e)
ou;
Vigyo a—zl — v, (3f)

The equations for the solid phase, (3a,b), must be supplemented by a linear
stress-strain relation for the small stress ¢, of the form

0']" = CI-,-k,Vkué. (4)

Therefore, equations (3a) and (3b) imply that U satisfies the usual equations of linear
dynamic elasticity,
, Ous
C/’ile]Vk ‘= oy 87; =0. 5)

Equations (3c,d) for the fluid require an additional linear equation of state,

Pr _P?ZE- (©)

where ¢, is the speed of sound. When combined with equations (3c) and (3d), this
implies a convective wave equation for the small pressure,

o 17/9 9 \?
VVp —— <—+ VO—> =0. 7
c]% ot ox! p ( )
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TaBLE 1

Summary of wave speeds in the problem. The solid shear modulus is
w>0 and Poisson ratio —1<v<3 For each speed, c,, the
dimensionless speed is s, = c./c,

Speed Definition
System mode =wlk
Fluid acoustic ¢;=dp/dpy| o2
Shear cZ=ul/p?
Longitudinal c=c2(1—=v)/(1-2v)
Plate ca=c2/(1—-v)
Bending ¢, =cRK*H:[[3(1 — v)]

2.3. TRAVELING WAVE SOLUTIONS

Let us consider “‘traveling-wave’’-solutions of the linearized system, i.e. the solutions
proportional to e ®'=@0 There are two distinct types of solutions, which we call
symmetric and antisymmetric, respectively. For the symmetric mode the shape of each
layer remains symmetric with respect to its median. The dispersion equation for this
mode is derived below as

2 . . )
(2_C>2m}l(k§tHS)_4§1§+zf<1_v>zflCmnh(k.ftHS)_

¢?) tanh(k&H,) 0 ¢/ &cttanh(kgH,)

(8)

Here we use the following notation: ¢ = w/k, is the velocity of the traveling wave, 2H,
and 2H; are the equilibrium thicknesses of the fluid and solid layers, respectively, p!
and p} are the undisturbed densities, and

E=0-ce)'?, &=01-c) =0 (c—V)ch'? )

where ¢, and ¢, are the velocities of bulk transverse and longitudinal waves,
respectively, within the undeformed solid layer, and c, is the bulk sound velocity within
the undisturbed fluid. The various wave speeds and associated dimensionless para-
meters are summarized in Table 1.

In the antisymmetric mode, opposite edge points of each layer have the same vertical
velocity. The dispersion equation for the antisymmetric mode is the following:

(2 ~ iz>z tanh(k§,H,) 4EE+ Py <1 ~ K")Z & c*tanh(kéHy)
2) tanh(k&H,) 0 p° ¢/ &cttanh(kéH,)

C; s

0. (10)

2.4. DERIVATION OF THE DISPERSION RELATIONS

The dispersion relations are derived using impedance-type concepts (or admittance,
which is the inverse of impedance). Consider the layer of solid of thickness 2H, subject
to a normal stress o on either face, such that the motion is either symmetric or
antisymmetric. The shear stress on both faces is zero. Similarly, consider the moving
fluid layer of thickness 2H, subject to a pressure disturbance p, again either symmetric
or antisymmetric. The symmetry or antisymmetry implies that we need only consider
half of the unit period of the system; that is, the solid and fluid half layers in
—H,<x’<0and 0<x’< H,, respectively. Define the effective impedances,

33
Uy Ix3=0 Us Ix3=0
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where « = +1 indicates the symmetry. Thus, « =1 and —1 correspond to the
symmetric and antisymmetric configurations, respectively.

Dispersion equations for guided waves can be deduced by imposing the force and
velocity continuity conditions at the interface. The former are

o’ =-p and o'=0 atx’=0. (12)
The kinematic continuity condition on the normal velocities is determined from

equation (3f) using the assumed dependence ¢**' =), to give
VO
vy = (1 — f>V§ at x> =0. (13)
c

Thus, the dispersion relation in the presence of flow follows from equations (11)
through (13) as

VO
S "
C

The fluid and solid impedances can be found by considering motion in isolated slabs
of either material. For convenience, the slabs may be repositioned with their
centerlines along x> =0, so that the solutions in each display parity with respect to x>.
The fluid impedance is determined by evaluating the ratio in the first of equations (11),
at the bottom surface of the fluid slab, and a simple calculation based on equations (7)
and (3c) gives

0 0
—i P (1 - %)[coth(kngf)]*l. (15)
f
The impedance of the solid is obtained by taking the ratio in the second of equations
(11) at the top surface of the solid slab, subject to the zero shear condition of the
second equation (12). For simplicity, we assume the solid layer to be isotropic, in which
case standard analysis gives

(1)
Zf -

p9c4 c2\2
260 =157 (46 eoh(ke )"~ (25 ) leoth(kei )] ). (16)
c’§ c;
The dispersion relations of equations (8) and (10) now follow directly from equations

(14) through (16).

3. ASYMPTOTIC LIMITS

We now consider several asymptotic cases of the general results defined by equations

(8) and (10). The results and their interpretation are simplified by the introduction of

dimensionless quantities. As noted in Table 1, all speeds are rendered dimensionless

with respect to the shear speed ¢,. Thus, s,=c¢/c,, s; =c;/c,, etc., and the nondimen-

sional speed of the guided wave is s =c/c, We also define a Mach number, M, a
density ratio, 8, and a thickness ratio 4,

M=—, d="—, h=—. 17

¢ P(s) H {17

3.1. SHORT WAVELENGTH AsYMPTOTICS: Two HALF SPACES

In the short wavelength limit |kH,|~ |kH;|>>1, the dispersion equations for both
modes lead to the same equation:

(@ — VT VI 557 4 8575 — MP ST
Vi M)

This reduces to the Rayleigh equation for waves on a traction-free half space when

0. (18)
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Figure 1. The real roots for flow over a solid half space, from equation (18). For simplicity, we have taken
the fluid and solid as incompressible (s, s;— %), and § =1. The emergence of complex roots occurs at
M =1-793 for this case.

8 =0 (Rayleigh 1885; Achenbach 1973), and it becomes the Scholte equation for
interfacial waves between fluid and solid half-spaces when M = 0 (Scholte 1948; 1949).
By solving it numerically one can find that the roots for the interface wave speed
become complex and the system becomes unstable for M = O(1). For example, Figure 1
shows the merging of two real roots as M is increased from zero. In this example,
complex roots appear for M greater than about 1-793.

3.2. LoNnG WAVELENGTH ASYMPTOTICS: SYMMETRIC MODE

The long wavelength asymptotics |kH,| ~ |kH;| <« 1 are quite distinct for the symmetric
and antisymmetric modes. For the symmetric mode we get

2 8 1—s%/s7
2_22_4<1_s7>+,2 —Mz[—l]:() 19
2=5) a) s =M 1— (s — My/s? (19)
This can be rewritten as a fourth-order polynomial equation for s,
1 —
(s = MY~ 6% - 59) s + s — M2~ s P =, 0)
PrSy PsSi

where ¢ = H;/(H; + H,) is the porosity, and s, =c,/c,, in which ¢, is the speed of a
longitudinal “plate” wave (see Table 1). Thus, s;=2/(1—v). We note that the
symmetric waves for the long wavelength asymptotic limit of an isolated plate in a fluid,
|kH,| << 1, |kH;|— o, are contained in equation (20) as the limiting case ¢ — 1.

At M =0, equation (20) becomes a quadratic equation with respect to s* which has
two physically meaningful roots: the velocities of the so-called Biot “fast”” and “slow”
waves (Rytov 1956; Schoenberg 1983, 1984; Plona et al. 1987). The speeds of the fast
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and slow waves are independent of the propagation direction for M = (0. However, any
non-zero relative velocity of the fluid destroys the equivalence of the opposite
directions. For small M, the last equation allows one to find the magnitude of the
velocity splitting for each type of wave. Thus, letting s, (positive or negative) be the
nondimensional wave speed for M =0, fast or slow, and letting s, be the other speed,
slow or fast, then the split velocities are

(55 = s,)(b/pysp) + (s = sDIA = )/ pysi
(s5 = sl /ppsi + (1= )/ pjsi
The fast and slow wave roots simplify when both constituents are incompressible,
that is, s, sy — %, 5, = 2. The fast speed then becomes infinite, but the slow roots are

h M*8\1"*  Ms
=x||l—])4~- +—. 22
’ [<8+h>< 8+h>] 5+h 22)
The critical Mach number is explicit in this case. That is, the slow wave speeds become
complex at M =2V1 + h/§, one being associated with an unstable disturbance.

s =50+ [ ]]M + O(M?). (21)

3.3. ANTISYMMETRIC MODES: FLEXURAL WAVES

In the asymptotic limit of |kH,| <« 1, the dispersion equation (10) for the antisymmetric
mode gives, to leading order,
tanh(kH;¢p)
kHy&p

Here s, is the nondimensional phase speed of a flexural wave (or bending wave) on a
plate in vacuo: ¢, = ¢, |kH|V2/3(1 — v). Thus, s = +£s, is recovered from equation (23)
with 6 =0. The bending wave is dispersive, and, by assumption, much slower than the
shear wave. However, we have retained the parameter &;in (23) rather than set it to
unity, in order to be consistent with standard analyses for fluid-loaded plates, e.g.
Junger & Feit (1986). The dispersion relation for a fluid-loaded plate in the absence of
flow is obtained from equation (23) by setting M = 0.

If the fluid layer is also very thin compared with the wavelength, i.e. |kH;| <« 1, then
equation (23) reduces to a quadratic equation in s, yielding

s?— s34 8h(s — M)? 0. (23)

Sp Mbh
=+ V1+8h(1—m?) + , 24
T T 1von = m +  on 4)
where m is the Mach number relative to the bending wave phase speed:
Ve MV3
=—-= . (25)
Cp |kI_IS| sp

When M =0, the roots yield s = +5,/V1 + 8h, which correspond to flexural waves on
an isolated plate which has the bending stiffness of a single elastic layer, and the mass
of a single period of the solid-liquid system. That is, the effect of the fluid is just an
added mass as it moves in phase with the flexural motion. For small values of M, or
equivalently m, the two roots are regular perturbations of the flexural wave roots. For
large m, on the other hand, we have the possibility of two complex roots when the
discriminant of equation (24) goes to zero. The existence of complex-conjugate roots
indicates that the flow causes a flutter-like instability. This occurs for m > m,., where
the critical value is

m, = VI + (8h) . (26)
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In summary, antisymmetric disturbances of the layered system are unstable for very
long wavelength (m>>1 or |kHy| <« M), but short wavelengths (m<<1) are stable.
There is a critical wavelength k = k. above which all disturbances are unstable, and it

is defined by m =m,, as
Ve 31—
kcz\/ i-v @7)
CtHs 2(1 + psHs/prf)

This is premised on the assumption that both k. H; and k.H; are small.

Finally, in order to analyse flutter of an isolated elastic layer, we let |kH|— % in the
dispersion equation (23) for the antisymmetric mode. Using the same variables as
before, we consequently obtain the following equation:

I 8(s—M)2:

§°—sp+ (28)
" IkH| g
When the fluid is incompressible, this equation becomes a quadratic with roots
kH, 8(1—m? Mé
s= £ 2 uzif 1+ (1-m )+ . incompressible fluid. (29)
5 + [kH,| kH,| &+ |kH,|

The possibility of complex conjugate roots again shows that flutter instability occurs for
long wavelength perturbation of the system. That is, the system is stable (unstable) for
|k| > k. (Jk| <k.), where the finite wavenumber defining the onset of the flutter regime
is

ke=—-A, (30)

and A is the unique positive root of

3IM?

NP+r=>1-v)>—.
( v 262

@31)
Brazier-Smith & Scott (1984) studied the stability of wave solutions for a thin plate in
an incompressible flow. Subsequently, Crighton & Oswell (1991) discussed the
response of the same system to a line drive on the plate, and further analysed the
stability issue. These studies are concerned with the temporal and frequency behavior,
and they therefore require expressions for the wavenumber k in terms of the frequency
w. The roots defined by equation (29) provide w as an explicit function of k, and are
much simpler to deal with as compared with the inverse functional relations defined by
the five roots for k in terms of w.

4. SUMMARY

The flow of compressible fluid through a layered medium provides a very rich system
for studying the phenomenon of acoustics in fluid conveying structures. Starting from
the exact nonlinear equation of motion we have derived the equations for small
dynamic disturbances superimposed upon a steady flow configuration. The possible
wave types for the periodically layered medium may be distinguished by their parity,
symmetric and antisymmetric, each of which displays quite distinct stability
characteristics.
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The general dispersion relation for symmetric modes is given by equation (8), with
short and long wavelength limits in equations (18) and (20), respectively. It is found
that instability is possible only for flow speed on the order of the bulk wave speeds, i.e.
for M = O(1).

Regarding antisymmetric modes, the general dispersion relation of equation (10) has
the same short wavelength limit as that for symmetric modes, equation (18). Thus,
disturbances of short wavelength become unstable only for M = O(1). However,
disturbances of very long wavelength are potentially unstable in the presence of flow
for both the periodic system, as indicated by equation (24), and for an isolated plate,
from equation (29). The associated long wavelength wave types are analogous to
flexural waves on plates in vacuo. For a given flow speed, or M, there is a critical
wavenumber, k., such that quasi-flexural waves are stable for k > k., but instability is
possible for all k£ <k..
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